The Symmetric Fourth Painlevé Hierarchy and Associated Special Polynomials

نویسندگان

  • GALINA V. FILIPUK
  • PETER A. CLARKSON
چکیده

In this paper two families of rational solutions and associated special polynomials for the equations in the symmetric fourth Painlevé hierarchy are studied. The structure of the roots of these polynomials is shown to be highly regular in the complex plane. Further representations are given of the associated special polynomials in terms of Schur functions. The properties of these polynomials are compared and contrasted with the special polynomials associated with rational solutions of the fourth Painlevé equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Special polynomials associated with the fourth order analogue to the Painlevé equations

Rational solutions of the fourth order analogue to the Painlevé equations are classified. Special polynomials associated with the rational solutions are introduced. The structure of the polynomials is found. Formulas for their coefficients and degrees are derived. It is shown that special solutions of the Fordy Gibbons, the Caudrey Dodd Gibbon and the Kaup Kupershmidt equations can be expressed...

متن کامل

Special Polynomials Associated with Rational and Algebraic Solutions of the Painlevé Equations

— Rational solutions of the second, third and fourth Painlevé equations (PII–PIV) can be expressed in terms of logarithmic derivatives of special polynomials that are defined through coupled second order, bilinear differential-difference equations which are equivalent to the Toda equation. In this paper the structure of the roots of these special polynomials, and the special polynomials associa...

متن کامل

The Yablonskii - Vorob’ev polynomials for the second Painlevé hierarchy

Special polynomials associated with rational solutions of the second Painlevé equation and other equations of its hierarchy are studied. A new method, which allows one to construct each family of polynomials is presented. The structure of the polynomials is established. Formulaes for their coefficients are found. The degree of every polynomial is obtained. The main achievement of the method lie...

متن کامل

The relationship between semi-classical Laguerre polynomials and the fourth Painlevé equation

We discuss the relationship between the recurrence coefficients of orthogonal polynomials with respect to a semiclassical Laguerre weight and classical solutions of the fourth Painlevé equation. We show that the coefficients in these recurrence relations can be expressed in terms of Wronskians of parabolic cylinder functions which arise in the description of special function solutions of the fo...

متن کامل

Determinant Structure of the Rational Solutions for the Painlevé IV Equation

Rational solutions for the Painlevé IV equation are investigated by Hirota bilinear formalism. It is shown that the solutions in one hierarchy are expressed by 3-reduced Schur functions, and those in another two hierarchies by Casorati determinant of the Hermite polynomials, or by special case of the Schur polynomials.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007